Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641343

RESUMO

Plasmonic nanostructures exhibit optical properties highly related to their morphologies, enabling diverse applications in various areas such as biosensing, bioimaging, chemical detection, cancer therapy, and solar energy conversion. The expansive uses of these nanostructures necessitate robust and versatile synthesis methods suitable for large-scale production. Here, we introduce our recent efforts in developing a new strategy for controlling the seeded growth of plasmonic metal nanostructures, employing deformable polymer capsules to regulate the growth kinetics and the resulting particle morphology. Employing sol-gel-derived resorcinol-formaldehyde (RF) resin as a typical capsule material, we highlight its advanced features, including mechanical deformability and molecular permeability, that can be manipulated by tuning the capsule thickness and cross-linking degree. These features enable highly controllable confined seeded growth of plasmonic nanostructures. We reveal the significant role of the Ostwald ripening process of the seeds and the capsule structures in determining the morphological evolution of the plasmonic nanostructures. Moreover, we highlight some distinctive plasmonic nanostructures resulting from this unique synthesis strategy and their intriguing functionalities in various potential applications. Our discussion concludes with potential research directions to advance the development of the deformable polymer-confined seeded growth strategy into a general and robust synthesis platform for creating cutting-edge functional plasmonic nanostructures.

2.
Nano Lett ; 24(15): 4588-4594, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587406

RESUMO

Effective thawing of cryopreserved samples requires rapid and uniform heating. This is achievable through nanowarming, an approach that heats magnetic nanoparticles by using alternating magnetic fields. Here we demonstrate the synthesis and surface modification of magnetic nanoclusters for efficient nanowarming. Magnetite (Fe3O4) nanoclusters with an optimal diameter of 58 nm exhibit a high specific absorption rate of 1499 W/g Fe under an alternating magnetic field at 43 kA/m and 413 kHz, more than twice that of commercial iron oxide cores used in prior nanowarming studies. Surface modification with a permeable resorcinol-formaldehyde resin (RFR) polymer layer significantly enhances their colloidal stability in complex cryoprotective solutions, while maintaining their excellent heating capacity. The Fe3O4@RFR nanoparticles achieved a high average heating rate of 175 °C/min in cryopreserved samples at a concentration of 10 mg Fe/mL and were successfully applied in nanowarming porcine iliac arteries, highlighting their potential for enhancing the efficacy of cryopreservation.


Assuntos
Calefação , Magnetismo , Suínos , Animais , Criopreservação , Óxido Ferroso-Férrico , Campos Magnéticos
3.
Bioconjug Chem ; 33(2): 363-368, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35098715

RESUMO

Modulation of protein functions and interactions is the most direct and effective means to intervene in cellular processes and pathogenesis. The majority of the critical intracellular signaling pathways, however, are considered undruggable using small molecules. In this regard, antibodies are superior in structural and functional diversity and are significantly easier to raise compared to the screening of small molecules. Despite these advantages, the uses of antibodies in live cells (either as an imaging agent or as a therapeutic compound) are substantially undermined, only acting on extracellular targets. The inability of targeting intracellular proteins is because of a fundamental issue: antibodies enter cells through endocytosis where the vast majority are trapped in endosomes for degradation. Here, we report a nanoparticle self-assembly strategy enabling antibody endosomal escape. We demonstrate the intracellular bioavailability of antibodies and the preserved binding specificity to their cytosolic targets. This technology is simple and opens exciting opportunities for live-cell imaging, therapeutics development, and cell engineering.


Assuntos
Endocitose , Endossomos , Anticorpos/metabolismo , Citosol/metabolismo , Endossomos/metabolismo , Proteínas/metabolismo
4.
Nanomicro Lett ; 11(1): 73, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34138032

RESUMO

The utilization of diagnosis to guide/aid therapy procedures has shown great prospects in the era of personalized medicine along with the recognition of tumor heterogeneity and complexity. Herein, a kind of multifunctional silicon-based nanostructure, i.e., gold nanoparticles-decorated fluorescent silicon nanorods (Au@SiNRs), is fabricated and exploited for tumor-targeted multimodal imaging-guided photothermal therapy. In particular, the prepared Au@SiNRs feature high photothermal conversion efficiency (~ 43.9%) and strong photothermal stability (photothermal performance stays constant after five-cycle NIR laser irradiation), making them high-performance agents for simultaneously photoacoustic and infrared thermal imaging. The Au@SiNRs are readily modified with targeting peptide ligands, enabling an enhanced tumor accumulation with a high value of ~ 8.74% ID g-1. Taking advantages of these unique merits, the Au@SiNRs are superbly suitable for specifically ablating tumors in vivo without appreciable toxicity under the guidance of multimodal imaging. Typically, all the mice treated with the Au@SiNRs remain alive, and no distinct tumor recurrence is observed during 60-day investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...